IP Address

IP Address
An Internet Protocol address (IP address) is a numerical label assigned to each device connected to a computer network that uses theInternet Protocol for communication. An IP address serves two principal functions: host or network interface identification and locationaddressing.
Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit number. However, because of the growth of the Internet and thedepletion of available IPv4 addresses, a new version of IP (IPv6), using 128 bits for the IP address, was developed in 1995, and standardized as RFC 2460 in 1998. IPv6 deployment has been ongoing since the mid-2000s.
IP addresses are usually written and displayed in human-readable notations, such as 172.16.254.1 in IPv4, and 2001:db8:0:1234:0:567:8:1 in IPv6. The size of the routing prefix of the address is designated in CIDR notation by suffixing the address with the number of significant bits, e.g., 192.168.1.15/24, which is equivalent to the historically used subnet mask 255.255.255.0.
The IP address space is managed globally by the Internet Assigned Numbers Authority (IANA), and by five regional Internet registries (RIR) responsible in their designated territories for assignment to end users and local Internet registries, such as Internet service providers. IPv4 addresses have been distributed by IANA to the RIRs in blocks of approximately 16.8 million addresses each. Each ISP or private network administrator assigns an IP address to each device connected to its network. Such assignments may be on a static (fixed or permanent) ordynamic basis, depending on its software and practices.

IP versions

Two versions of the Internet Protocol are in common use in the Internet today. The original version of the Internet Protocol for use in the Internet is Internet Protocol version 4(IPv4), first installed in 1983.
The rapid exhaustion of IPv4 address space available for assignment to Internet service providers and end user organizations by the early 1990s, prompted the Internet Engineering Task Force (IETF) to explore new technologies to expand the addressing capability in the Internet. The result was a redesign of the Internet Protocol which became eventually known as Internet Protocol Version 6 (IPv6) in 1995. IPv6 technology was in various testing stages until the mid-2000s, when commercial production deployment commenced.
IANA's primary IPv4 address pool was exhausted on 3 February 2011, when the last five blocks were allocated to the five RIRsAPNIC was the first RIR to exhaust its regional pool on 15 April 2011, except for a small amount of address space reserved for the transition to IPv6, intended to be allocated in a restricted process.Individual ISPs still had unassigned pools of IP addresses, and could recycle addresses no longer needed by their subscribers.
Today, these two versions of the Internet Protocol are in simultaneous use. Among other technical changes, each version defines the format of addresses differently. Because of the historical prevalence of IPv4, the generic term IP address typically still refers to the addresses defined by IPv4. The gap in version sequence between IPv4 and IPv6 resulted from the assignment of version 5 to the experimental Internet Stream Protocol in 1979, which however was never referred to as IPv5.

IPv4 addresses



Decomposition of an IPv4 address from dot-decimal notation to its binary value.
An IP address in IPv4 is 32-bits in size, which limits the address space to 4294967296 (232) IP addresses. Of this number, IPv4 reserves some addresses for special purposes such as private networks (~18 million addresses) or multicast addresses(~270 million addresses).
IPv4 addresses are usually represented in dot-decimal notation, consisting of four decimal numbers, each ranging from 0 to 255, separated by dots, e.g., 172.16.254.1. Each part represents a group of 8 bits (octet) of the address. In some cases of technical writing, IPv4 addresses may be presented in various hexadecimaloctal, or binary representations.

Subnetting

In the early stages of development of the Internet Protocol, network administrators interpreted an IP address in two parts: network number portion and host number portion. The highest order octet (most significant eight bits) in an address was designated as the network number and the remaining bits were called the rest field or host identifier and were used for host numbering within a network.
This early method soon proved inadequate as additional networks developed that were independent of the existing networks already designated by a network number. In 1981, the Internet addressing specification was revised with the introduction of classful network architecture.
Classful network design allowed for a larger number of individual network assignments and fine-grained subnetwork design. The first three bits of the most significant octet of an IP address were defined as the class of the address. Three classes (AB, and C) were defined for universal unicast addressing. Depending on the class derived, the network identification was based on octet boundary segments of the entire address. Each class used successively additional octets in the network identifier, thus reducing the possible number of hosts in the higher order classes (B and C). The following table gives an overview of this now obsolete system.

Historical classful network architecture
ClassLeading
bits
Size of network
number
 bit field
Size of rest
bit field
Number
of networks
Addresses
per network
Start addressEnd address
A0824128 (27)16,777,216 (224)0.0.0.0127.255.255.255
B10161616,384 (214)65,536 (216)128.0.0.0191.255.255.255
C1102482,097,152 (221)256 (28)192.0.0.0223.255.255.255
Classful network design served its purpose in the startup stage of the Internet, but it lacked scalability in the face of the rapid expansion of the network in the 1990s. The class system of the address space was replaced with Classless Inter-Domain Routing (CIDR) in 1993. CIDR is based on variable-length subnet masking (VLSM) to allow allocation and routing based on arbitrary-length prefixes.
Today, remnants of classful network concepts function only in a limited scope as the default configuration parameters of some network software and hardware components (e.g. netmask), and in the technical jargon used in network administrators' discussions.

Private addresses

Early network design, when global end-to-end connectivity was envisioned for communications with all Internet hosts, intended that IP addresses be uniquely assigned to a particular computer or device. However, it was found that this was not always necessary as private networks developed and public address space needed to be conserved.
Computers not connected to the Internet, such as factory machines that communicate only with each other via TCP/IP, need not have globally unique IP addresses. Three non-overlapping ranges of IPv4 addresses for private networks were reserved in . These addresses are not routed on the Internet and thus their use need not be coordinated with an IP address registry.
Today, when needed, such private networks typically connect to the Internet through network address translation (NAT).

Reserved private IPv4 network ranges
StartEndNumber of addresses
10.0.0.010.255.255.25516777216
172.16.0.0172.31.255.2551048576
192.168.0.0192.168.255.25565536
Any user may use any of the reserved blocks. Typically, a network administrator will divide a block into subnets; for example, many home routers automatically use a default address range of 192.168.0.0 through 192.168.0.255 (192.168.0.0/24).

IPv6 addresses



Decomposition of an IPv6 address fromhexadecimal representation to its binary value.
In IPv6, the address size was increased from 32 bits in IPv4 to 128 bits or 16 octets, thus providing up to 2128 (approximately3.403×1038) addresses. This is deemed sufficient for the foreseeable future.
The intent of the new design was not to provide just a sufficient quantity of addresses, but also redesign routing in the Internet by more efficient aggregation of subnetwork routing prefixes. This resulted in slower growth of routing tables in routers. The smallest possible individual allocation is a subnet for 264 hosts, which is the square of the size of the entire IPv4 Internet. At these levels, actual address utilization ratios will be small on any IPv6 network segment. The new design also provides the opportunity to separate the addressing infrastructure of a network segment, i.e. the local administration of the segment's available space, from the addressing prefix used to route traffic to and from external networks. IPv6 has facilities that automatically change the routing prefix of entire networks, should the global connectivity or the routing policy change, without requiring internal redesign or manual renumbering.
The large number of IPv6 addresses allows large blocks to be assigned for specific purposes and, where appropriate, to be aggregated for efficient routing. With a large address space, there is no need to have complex address conservation methods as used in CIDR.
All modern desktop and enterprise server operating systems include native support for the IPv6 protocol, but it is not yet widely deployed in other devices, such as residential networking routers, voice over IP (VoIP) and multimedia equipment, and network peripherals.

Private addresses

Just as IPv4 reserves addresses for private networks, blocks of addresses are set aside in IPv6. In IPv6, these are referred to as unique local addresses (ULA). reserves the routing prefix fc00::/7 for this block which is divided into two /8 blocks with different implied policies. The addresses include a 40-bit pseudorandom number that minimizes the risk of address collisions if sites merge or packets are misrouted.
Early practices used a different block for this purpose (fec0::), dubbed site-local addresses.However, the definition of what constituted sites remained unclear and the poorly defined addressing policy created ambiguities for routing. This address type was abandoned and must not be used in new systems.
Addresses starting with fe80:, called link-local addresses, are assigned to interfaces for communication on the attached link. The addresses are automatically generated by the operating system for each network interface. This provides instant and automatic communication between all IPv6 host on a link. This feature is required in the lower layers of IPv6 network administration, such as for the Neighbor Discovery Protocol.
Private address prefixes may not be routed on the public Internet.

Comments

Popular Posts